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In a recent paper we presented a stochastic Green function �SGF� algorithm, which has the properties of

being general and easy to apply to any lattice Hamiltonian of the form Ĥ= V̂− T̂, where V̂ is diagonal in the

chosen occupation number basis and T̂ has only positive matrix elements. We propose here a modified version
of the update scheme that keeps the simplicity and generality of the original SGF algorithm, and significantly
enhances its efficiency.
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I. INTRODUCTION

Monte Carlo methods �1� appeared about 60 years ago
with the need to evaluate numerical values for various com-
plex problems. These methods evolved and were applied
early to quantum problems, thus putting within reach exact
numerical solutions to nontrivial quantum problems �2–5�.
Many improvements of these methods followed, avoiding
critical slowing down near phase transitions and allowing
one to work directly in the continuous imaginary time limit
�6–13�. In recent years, interest in methods that work in the
canonical ensemble with global updates and yet allow access
to Green functions has intensified �14,15�. However, a
method that works well for a given Hamiltonian often needs
major modifications for another. For example, the addition of
a four-site ring exchange term in the bosonic Hubbard model
required special developments for a treatment by the stochas-
tic series expansion algorithm �16�, as well as by the word-
line algorithm �17�. This can result in long delays. It is,
therefore, advantageous to have at one’s disposal an algo-
rithm that can be applied to a very wide class of Hamilto-
nians without requiring any changes. In a recent paper �15�,
the stochastic Green function �SGF� algorithm was pre-
sented, which meets this goal. The algorithm can be applied
to any lattice Hamiltonian of the form

Ĥ = V̂ − T̂ , �1�

where V̂ is diagonal in the chosen occupation number basis

and T̂ has only positive matrix elements. This includes all
kinds of systems that can be treated by other methods pre-
sented in Refs. �5,11–14�, for instance Bose-Hubbard models
with or without a trap, Bose-Fermi mixtures in one dimen-
sion, Heisenberg models, and so on. In particular, Hamilto-

nians for which the nondiagonal part T̂ is nontrivial �the
eigenbasis is unknown� are easily treated, such as the Bose-
Hubbard model with ring exchange �16,17�, or multispecies
Hamiltonians in which a given species can be turned into
another one �see Eq. �49� and Figs. 3 and 4 for a concrete
example�. Systems for which it is not possible to find a basis

in which V̂ is diagonal and T̂ has only positive matrix ele-
ments are said to have a “sign problem,” which usually arises
with fermionic and frustrated systems. Like other quantum
Monte Carlo �QMC� methods, the SGF algorithm does not
solve this problem.

The algorithm allows one to measure several quantities of
interest, such as the energy, the local density, local compress-
ibility, density-density correlation functions, and so on. In
particular, the winding is sampled and gives access to the
superfluid density. Equal-time n-body Green functions are
probably the most interesting quantities that can be measured
by the algorithm, by giving access to momentum distribution
functions which allow direct comparisons with experiments.
All details on measurements are given in Ref. �15�.

In addition the algorithm has the property of being easy to
code, due in part to a simple update scheme in which all
moves are accepted with a probability of 1. Despite such
generality and simplicity, the algorithm might suffer from a
reduced efficiency, compared to other algorithms in situa-
tions where they can be applied.

The purpose of this paper is to present a “directed” update
scheme that �i� keeps the simplicity and generality of the
original SGF algorithm, and �ii� enhances its efficiency by
improving the sampling over the imaginary time axis. While
the SGF algorithm is not intended to compete with the speed
of other algorithms, the improvement resulting from the di-
rected update scheme is remarkable �see Sec. V�. But what
makes the strength of the SGF method is that it allows one to
simulate Hamiltonians that cannot be treated by other meth-
ods or that would require special developments �see Eq. �49�
for a concrete example�. The paper is organized as follows.
We introduce in Sec. II the notations and definitions used in
Ref. �15�. In Sec. III, we propose a simplification of the
update scheme used in the original SGF algorithm, and de-
termine how to satisfy detailed balance. A generalization of
the simplified update scheme is presented in Sec. IV, which
constitutes the directed update scheme. Finally, Sec. V shows
how to determine the introduced optimization parameters,
and presents some tests of the algorithm and a comparison
with the original version.

II. DEFINITIONS AND NOTATIONS

In this section, we recall the expression of the “Green
operator” introduced in the SGF algorithm, and the extended
partition function which is considered. Although not required
for understanding this paper, we refer the reader to Ref. �15�
for full details on the algorithm. Like many QMC algo-
rithms, the SGF algorithm samples the partition function
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Z��� = Tr e−�Ĥ. �2�

The algorithm has the property of working in the canonical
ensemble. In order to define the Green operator, we first
define the “normalized” creation and annihilation operators,

Â† = a† 1

�n̂ + 1
, Â =

1

�n̂ + 1
a , �3�

where a† and a are the usual creation and annihilation opera-
tors of bosons, and n̂=a†a is the number operator. From Eq.
�3� one can show the following relations for any state �n� in
the occupation number representation:

Â†�n� = �n + 1�, Â�n� = �n − 1� , �4�

with the particular case Â �0�=0. Apart from this exception,

the operators Â† and Â change a state �n� by respectively
creating and annihilating one particle, but they do not change
the norm of the state.

Using the notation �ip � jq	 to denote two subsets of site
indices i1 , i2 , . . . , ip and j1 , j2 , . . . , jq with the constraint that
all indices in subset i are different from the indices in subset
j �but several indices in one subset may be equal�, we define

the Green operator Ĝ by

Ĝ = 

p=0

+�



q=0

+�

gpq 

�ip�jq	

�
k=1

p

Âik
† �

l=1

q

Â jl
, �5�

where gpq is a matrix that depends on the application of the
algorithm �15�. In order to sample the partition function �2�,
an extended partition function Z�� ,�� is considered by

breaking up the propagator e−�Ĥ, and introducing the Green
operator between the broken parts,

Z��,�� = Tre−��−��ĤĜe−�Ĥ. �6�

Defining the time-dependent operators T̂��� and Ĝ���,

T̂��� = e�V̂T̂e−�V̂, Ĝ��� = e�V̂Ĝe−�V̂, �7�

and working in the occupation number basis in which V̂ is
diagonal, the extended partition function takes the form

Z��,�� = 

n�0

�
0��1�¯��n��

�0�e−�VT̂��n���n−1��n−1�T̂��n−1�

���n−2� � ¯ � �L+1�T̂��L���L��L�Ĝ�����R�

��R�T̂��R���R−1� � ¯ � �2�T̂��2���1��1�T̂��1�

���0�d�1 ¯ d�n, �8�

where the sum 
n�0 implicitly runs over complete sets of
states ���k�	. We will systematically use the labels L and R to
denote the states appearing on the left and the right of the
Green operator, and use the notation Vk to denote the diago-

nal energy �k�V̂��k�. We will also denote by �L and �R the

time indices of the T̂ operators appearing on the left and the

right of Ĝ.

As a result, the extended partition function is a sum over
all possible configurations, each being determined by a set of
time indices �1 ,�2 , . . . ,�R ,� ,�L , . . . ,�n and a set of states
��0� , ��1� , . . . , ��R� , ��L� , . . . , ��n−1�. The algorithm consists in
updating those configurations by making use of the Green
operator. Assuming that the Green operator is acting at time

�, it can “create” a T̂ operator �that is to say a T̂ operator can
be inserted in the operator string� at the same time, thus
introducing a new intermediate state, then it can be shifted to

a different time. While shifting, any T̂ operator encountered
by the Green operator is “destroyed” �that is to say removed
from the operator string�. Assuming a left �or right� move,
creating an operator will update the state ��R� �or ��L��, while
destroying will update the state ��L� �or ��R��. When a diag-
onal configuration of the Green operator occurs, ��L�= ��R�,
such a configuration associated to the extended partition
function �8� is also a configuration associated to the partition
function �2�. Measurements can be done when this occurs
�see Ref. �15� for details on measurements�.

The next section presents a simple update scheme that
meets the requirements of ergodicity and detailed balance.

III. SIMPLIFIED UPDATE SCHEME

Before introducing the directed update, we start by sim-
plifying the update scheme used in the original SGF algo-
rithm.

A. The update scheme

We will assume in the following that a left move of the
Green operator is chosen. In the original version, the Green

operator Ĝ��� can choose to create or not on its right a T̂
operator at time �. Then a time shift �� to the left is chosen
for the Green operator with an exponential distribution in the
range �0; +��. If an operator is encountered while shifting
the Green operator, then the operator is destroyed and the
move stops there. As a result, four possible situations can
occur during one move: �1� No creation, shift, no destruc-
tion; �2� Creation, shift, no destruction; �3� No creation, shift,
destruction; �4� Creation, shift, destruction. It appears that
the first possibility, “no creation, no destruction,” is actually
useless, since no change is performed in the operator string.
The idea is to get rid of this possibility by forcing the Green
operator to destroy an operator if no creation is chosen. A
further simplification can be done by noticing that the last
possibility, “creation, destruction,” is not necessary for the
ergodicity of the algorithm, and can be avoided by restricting
the range of the time shift after having created an operator.
Therefore we replace the original update scheme by the fol-
lowing. We assume that the Green operator is acting at time
� and that the operator on its left is acting at time �L. The

Green operator Ĝ��� chooses to create or not an operator on
its right at time �. If creation is chosen, then a time shift ��
of the Green operator is chosen to the left in the range
�0;�L−��, with the probability distribution defined below. If
no creation is chosen, then the Green operator is directly
shifted to the operator on its left at time �L, and the operator
is destroyed. As a result only two possibilities have to be
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considered: �1� Creation, shift; �2� Shift, destruction.
Figure 1 shows the associated organigram. Section III B

explains how detailed balance can be satisfied with this sim-
plified update scheme.

B. Detailed balance

When updating the configurations according to the chosen
update scheme, we need to generate different transitions
from initial to final states with probabilities that satisfy de-
tailed balance. In this section we propose a choice for these
probabilities, and determine the corresponding acceptance
factors. We denote the probability of the initial �final� con-
figuration by Pi �Pf�. We denote by Si→f the probability of
the transition from configuration i to configuration f , and by
Sf→i the probability of the reverse transition. Finally we de-
note by Ai→f the acceptance rate of the transition from i to f ,
and by Af→i the acceptance rate of the reverse transition. The
detailed balance can be written as

PiSi→fAi→f = PfSf→iAf→i. �9�

We will make use of the Metropolis solution �18�

Ai→f = min�1,q� �10�

with

q =
PfSf→i

PiSi→f
. �11�

We will use primed �nonprimed� labels for states and time
indices to denote final �initial� configurations.

1. Creation, shift

We consider here the case where a left move is chosen, an
operator is created on the right of the Green operator at time
�, and a new state is chosen. Then a time shift to the left is
chosen for the Green operator in the range �0,�L�−�R��. It is

important to note that �L� and �R� correspond to the time indi-
ces of the operators appearing on the left and the right of the
Green operator after the new operator has been inserted, that
is to say, at the moment where the time shift needs to be
performed. Thus we have �L�=�L and �R� =�.

The probability of the initial configuration is the Boltz-
mann weight appearing in the extended partition function
�8�:

Pi 	 �L�Ĝ�����R� 	 e�VL�L�Ĝ��R�e−�VR. �12�

The probability of the final configuration takes the form

Pf 	 �L��Ĝ������R���R� �T̂��R����R−1� �

	 e��VL��L��Ĝ��R��e−���−�R��VR��R� �T̂��R−1� �e−�R�VR−1� . �13�

It is important here to realize that the Green operator inserted

only on its right the operator ��R���R� �T̂��R��, before being
shifted from �R� to ��. Therefore we have the equalities �L��
= �L�, ��R−1� �= ��R�, VL�=VL, and VR−1� =VR.

The probability Si→f of the transition from the initial con-
figuration to the final configuration is the probability P�←�
of a left move, times the probability P←

† ��� of a creation,
times the probability P←��R�� to choose the new state �R� ,

times the probability P←
L�R����−�R�� to shift the Green opera-

tor by ��−�R� , knowing that the states on the left and the right
of the Green operator at the moment of the shift are �L� and
�R�:

Si→f = P�←�P←
† ���P←��R��P←

L�R���� − �R�� . �14�

The probability of the reverse transition is simply the prob-
ability P�→�� of a right move, times the probability of no
creation, 1− P→

† ����:

Sf→i = P�→���1 − P→
† ����� . �15�

From the original version of the SGF algorithm, we know
that choosing the time shift with an exponential distribution
is a good choice, because it cancels the exponentials appear-
ing in the probabilities of the initial �12� and final �13� con-
figurations, avoiding exponentially small acceptance factors.
However a different normalization must be used here, since
the time shift is chosen in the range �0;�L�−�R�� instead of
�0; +��. The suitable solution is:

P←
L�R����� =

�VR� − VL��e−���VR�−VL��

1 − e−��L�−�R���VR�−VL��
. �16�

It is straightforward to check that the above probability is
correctly normalized and well defined for any real value of
VR� −VL�, the particular case VL�=VR� reducing to the uniform
distribution P����=1 / ��L�−�R�� �note that �L�−�R� is always a
positive number�. For the probability P←��R�� to choose the
new state �R� , the convenient solution is the same as in the
original version:

FIG. 1. Simplified update scheme. See text for details.
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P←��R�� =
�L�Ĝ��R���R� �T̂��R�

�L�ĜT̂��R�
. �17�

Putting everything together, the acceptance factor �11� be-
comes

q←
c =

�L�ĜT̂��R�

�L�Ĝ��R�P�←�P←
† ���

�
P�→���1 − P→

† ������1 − e−��L�−�R���VR�−VL���
VR� − VL�

, �18�

where we have used the notation q←
c to emphasize that this

acceptance factor corresponds to a creation. It is also impor-
tant for the remainder of this paper to note that q←

c is written
as a quantity that depends on the initial configuration, times
a quantity that depends on the final configuration.

2. Shift, destruction

We consider here the case where a left move is chosen,
and the operator on the left of the Green operator is de-
stroyed. This move corresponds to the inverse of the above
“creation, shift” move. Thus, the corresponding acceptance
factor q←

d is obtained by inverting the acceptance factor q←
c ,

exchanging the initial time � and final time ��, and switching
the direction. However �L−�R represents an absolute time
shift, so �L and �R do not have to be exchanged. We get

q←
d =

VL − VR

P�←��1 − P←
† �����1 − e−��L−�R��VL−VR��

�
�L��Ĝ��R��P�→��P→

† ����

�L��T̂Ĝ��R��
, �19�

which is written as a quantity that depends on the initial
configuration, times a quantity that depends on the final con-
figuration.

3. Simplification of the acceptance factors

We will use here the short notation Ĝ�, ĜT̂�, and T̂Ĝ� to

denote, respectively, the quantities �L�Ĝ��R�, �L�ĜT̂��R�,
and �L�T̂Ĝ��R�. As in Ref. �15�, we have some freedom for
the choice of the probabilities of choosing a left or right
move, P�←� and P�→�, and the probabilities of creation
P←

† ��� and P→
† ���. A suitable choice for those probabilities

can be done in order to accept all moves, resulting in an
appreciable simplification of the algorithm. For this purpose,
we impose the acceptance factor q←

c �or q→
c � to be equal to

the acceptance factor q←
d �or q→

d �. This allows us to deter-
mine the probabilities P←

† ��� and P→
† ���,

P←
† ��� =

ĜT̂�

ĜT̂� + Ĝ�
�VL − VR�

1 − e−��L−�R��VL−VR�

�20�

P→
† ��� =

T̂Ĝ�

T̂Ĝ� + Ĝ�
�VR − VL�

1 − e−��L−�R��VR−VL�

, �21�

and the acceptance factors q←
c =q←

d and q→
c =q→

d take the
forms

q← =
P�→��r←���
P�←�r→����

, q→ =
P�←��r→���
P�→�r←����

, �22�

with

r←��� =
ĜT̂�

Ĝ�
+

VL − VR

1 − e−��L−�R��VL−VR� , �23�

r→��� =
T̂Ĝ�

Ĝ�
+

VR − VL

1 − e−��L−�R��VR−VL� . �24�

Finally we can require the acceptance factors q← and q→ to
be equal. This implies

P�←� =
r←���

r←��� + r→���
, P�→� =

r→���
r←��� + r→���

. �25�

Defining R���=r←���+r→���, we are left with a single accep-
tance factor,

q =
R���
R����

, �26�

which is independent of the chosen direction, and indepen-
dent of the nature of the move �creation or destruction�. Thus
all moves can be accepted by making use of a proper re-
weighting, as explained in Ref. �15�. The Appendix shows
how to generate random numbers with the appropriate expo-
nential distribution �16�.

C. Discussion

Although the above simplified update scheme works, it
turns out to have a poor efficiency. This is because of a lack
of directionality: The Green operator has, on average, a prob-
ability of 1 /2 to choose a left move or a right move. There-
fore the Green operator propagates along the operator string
like a drunk man, with a diffusionlike law. The basic creation
and destruction processes correspond to the steps of a ran-
dom walk.

This suggests that the efficiency of the update scheme can
be improved if one can force the Green operator to move in
the same direction for several iterations. The next section
presents a modified version of the simplified update scheme,
which allows us to control the mean length of the steps of the
random walk, that is to say, the mean number of creations
and destructions in a given direction. The proposed directed
update scheme can be considered analogous to the “directed
loop update” used in the stochastic series expansion algo-
rithm �11,19�, which prevents a worm from going backward.
However, the connection should not be pushed too far. In-
deed, the picture of a worm whose head is evolving in both
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space and imaginary time across vertices is obvious in a loop
algorithm. In such an algorithm, a creation �or an annihila-
tion� operator which is represented by the head of a worm is
propagated in both space and imaginary time, while an anni-
hilation �or a creation� operator represented by the tail of the
worm remains at rest. The loop ends when the head of the
worm bites the tail.

Such a worm picture is not obvious in the SGF algorithm:
Instead of single creation or annihilation operators, it is the
full Green operator over the whole space that is propagated
only in imaginary time. This creates open worldlines, thus
introducing discontinuities. These discontinuities increase or
decrease while propagating in imaginary time. All open ends
of the worldlines are localized at the same imaginary time
index. Therefore it is actually not possible to draw step by
step a worm whose head is evolving in space and imaginary
time until it bites its tail.

IV. DIRECTED UPDATE SCHEME

We present in this section a directed update scheme which
is obtained by modifying slightly the simplified update
scheme, thus keeping the simplicity and generality of the
algorithm.

A. The update scheme

Assuming that a left move is chosen, the Green operator
chooses between starting the move by a creation or a destruc-
tion. After having created �or destroyed� an operator, the
Green operator can choose to keep moving in the same di-
rection and destroy �or create� with a probability P←

kd �or
P←

kc�, or to stop. If it keeps moving, then a destruction �or
creation� occurs, and the Green operator can choose to keep
moving and create �or destroy� with a probability P←

kc �or
P←

kd�… and so on, until it decides to stop. If the last action of
the move is a creation, then a time shift is chosen. The or-
ganigram is represented in Fig. 2.

B. Detailed balance

In order to satisfy detailed balance, in addition to the ac-
ceptance factors q←

c and q←
d , we need to determine new ac-

ceptance factors of the form q←
cdcdcdc. . . and q←

dcdcdcd. . .. We first
determine the new expressions of q←

c and q←
d resulting from

the directed update scheme. For q←
c , the previous probability

Si→f has to be multiplied by the probability to stop the move
after having created, 1− P←

kd����. The previous probability
Sf→i has to be multiplied by the probability to stop the move
after having destroyed, 1− P→

kc���. We get for q←
c and q←

d the
new expressions

q←
c =

�L�ĜT̂��R��1 − P→
kc����

�L�Ĝ��R�P�←�P←
† ���

�
P�→���1 − P→

† ������1 − e−��L�−�R���VR�−VL���
�1 − P←

kd������VR� − VL��
, �27�

q←
d =

�1 − P→
kd�����VL − VR�

P�←��1 − P←
† �����1 − e−��L−�R��VL−VR��

�
�L��Ĝ��R��P�→��P→

† ����

�L��T̂Ĝ��R���1 − P←
kc�����

. �28�

1. Creation, destruction

We consider here the case where a left move is chosen, an
operator is created on the right of the Green operator, and a
new state is chosen. Then the operator on the left of the
Green operator is destroyed. Using the superscripts a ,b ,c , . . .
to denote intermediate configurations between initial and fi-
nal configurations, the sequence is the following:

�1� Pi	 �L+1�T̂��L���L��L�Ĝ�����R�,
�2� �L+1

a �T̂��L
a���L

a��L
a�Ĝ��a���R

a��R
a �T̂��R

a���R−1
a �,

�3� Pf 	 �L��Ĝ������R���R� �T̂��R����R−1� �,
where we have �L+1�= �L+1

a �= �L��, ��R�= ��R−1
a �= ��R−1� �,

��L��L�= ��L
a��L

a�, and ��R
a��R

a �= ��R���R� �. The probability
of the transition from the initial configuration to the final
configuration is the probability P�←� to choose a left move,
times the probability P←

† ��� to create an operator at time �,
times the probability P←��R

a� to choose the new state �R
a ,

times the probability P←
kd�a� to keep moving and destroy,

times the probability 1− P←
kc���� to stop the move after hav-

ing destroyed:

Si→f = P�←�P←
† ���P←��R

a�P←
kd�a��1 − P←

kc����� . �29�

The probability of the reverse move is exactly symmetric:

Sf→i = P�→��P→
† ����P→��L

a�P→
kd�a��1 − P→

kc���� . �30�

It is important to notice that, when in the intermediate con-
figuration a, the time �L

a of the operator to the left of the

FIG. 2. Directed update scheme. See text for details.
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Green operator is equal to �L, and the time �R
a of the operator

to the right of the Green operator is equal to �. Thus the
acceptance factor takes the form

q←
cd =

�L�ĜT̂��R��1 − P→
kc����

�L�Ĝ��R�P�←�P←
† ���

e−��L
a−�R

a �VR
a
P→

kd�a�

e−��L
a−�R

a �VL
a
P←

kd�a�

�
�L��Ĝ��R��P�→��P→

† ����

�L��T̂Ĝ��R���1 − P←
kc�����

, �31�

and is written as a quantity that depends on the initial con-
figuration, times a quantity that depends on the intermediate
configuration a, times a quantity that depends on the final
configuration. It is useful for the remainder of the paper to
define the intermediate acceptance factor,

q←
c−d�a� =

e−��L
a−�R

a �VR
a
P→

kd�a�

e−��L
a−�R

a �VL
a
P←

kd�a�
. �32�

2. Destruction, creation

We consider here the case where a left move is chosen,
the operator on the left of the Green operator is destroyed,
then an operator is created on its right, and a new state is
chosen. Finally a time shift is chosen. The sequence of con-
figurations is the following:

�1� Pi	 �L+1�T̂��L���L��L�Ĝ�����R�,
�2� �L

a�Ĝ��a���R
a�,

�3� Pf 	 �L��Ĝ������R���R� �T̂��R����R−1� �,
where we have �L+1�= �L

a�= �L�� and ��R�= ��R
a�= ��R−1� �.

The probability of the transition from the initial configura-
tion to the final configuration is the probability P�←� to
choose a left move, times the probability 1− P←

† ��� of no
creation, times the probability P←

kc�a� to keep moving and
create, times the probability P←��R�� to choose the new state
�R� , times the probability 1− P←

kd���� to stop the move after

having destroyed, times the probability P←
L�R����−�R�� to shift

the Green operator by ��−�R�:

Si→f = P�←��1 − P←
† ����P←

kc�a�P←��R��

� �1 − P←
kd�����P←

L�R���� − �R�� . �33�

The probability of the reverse move is exactly symmetric:

Sf→i = P�→���1 − P→
† �����P→

kc�a�P→��L�

� �1 − P→
kd����P→

LR��L − �� . �34�

The acceptance factor takes the form

q←
dc =

�1 − P→
kd�����VL − VR�

P�←��1 − P←
† �����1 − e−��L−�R��VL−VR��

�
�L

a�ĜT̂��R
a�P→

kc�a�

�L
a�T̂Ĝ��R

a�P←
kc�a�

�
P�→���1 − P→

† ������1 − e−��L�−�R���VR�−VL���
�1 − P←

kd������VR� − VL��
, �35�

and is written as a quantity that depends on the initial con-
figuration, times a quantity that depends on the intermediate
configuration a, times a quantity that depends on the final
configuration. It is useful for the remaining of the paper to
define the intermediate acceptance factor,

q←
d−c�a� =

�L
a�ĜT̂��R

a�P→
kc�a�

�L
a�T̂Ĝ��R

a�P←
kc�a�

. �36�

3. Creation, destruction, creation

We consider here the case where a left move is chosen, an
operator is created on the right of the Green operator, then
the operator on its left is destroyed, then a second operator is
created on its right. Finally, a time shift of the Green operator
is performed. The sequence of configurations is the follow-
ing:

�1� Pi	 �L+1�T̂��L���L��L�Ĝ�����R�,
�2� �L+1

a �T̂��L
a���L

a��L
a�Ĝ��a���R

a��R
a �T̂��R

a���R−1
a �,

�3� �L
b�Ĝ��b���R

b��R
b �T̂��R

b���R−1
b �,

�4� Pf 	 �L��Ĝ������R���R� �T̂��R����R−1� ��R−1� �T̂��R−1� ���R−2� �.
Considering the intermediate configurations a and b between
the initial and final configurations, it is easy to show that the
corresponding acceptance factor can be written

q←
cdc = q←

c � q←
c−d�a� � q←

d−c�b� . �37�

4. Destruction, creation, destruction

We consider here the case where a left move is chosen,
the operator on the left of the Green operator is destroyed,
then an operator is created on its right. Finally a second
operator on the left of Green operator is destroyed. The se-
quence of configurations is the following

�1� Pi	 �L+2�T̂��L+1���L+1��L+1�T̂��L���L��L�Ĝ�����R�,
�2� �L+1

a �T̂��L
a���L

a��L
a�Ĝ��a���R

a�,
�3� �L+1

b �T̂��L
b���L

b��L
b�Ĝ��b���R

b��R
b �T̂��R

b���R−1
b �,

�4� Pf 	 �L��Ĝ������R���R� �T̂��R����R−1� �.
Considering the intermediate configurations a and b between
the initial and final configurations, it is easy to show that the
corresponding acceptance factor can be written

q←
dcd = q←

d � q←
d−c�a� � q←

c−d�b� . �38�

5. Generalization

It is straightforward to show that the acceptance factors of
the form q←

cdcdc, q←
cdcdcdc, q←

cdcdcdcdc , . . . �or q←
dcdcd, q←

dcdcdcd,
q←

dcdcdcdcd , . . .� can be expressed as products of the acceptance
factor q←

c �or q←
d � and the intermediate factors q←

c−d and q←
d−c.

In the same manner, the acceptance factors of the form
q←

cdcd, q←
cdcdcd, q←

cdcdcdcd , . . . �or q←
dcdc, q←

dcdcdc, q←
dcdcdcdc , . . .� can

be expressed as products of the acceptance factor q←
cd �or q←

dc�
and the intermediate factors q←

c−d and q←
d−c.

6. Simplification of the acceptance factors

Here again it is possible to take advantage of the freedom
that we have for the choice of the probabilities P�←�, P←

† ,
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P←
kc , and P←

kd �or P�→�, P→
† , P→

kc , and P→
kd�. A proper choice of

these probabilities can be done in order to allow us to accept
all moves, simplicity and generality being the leitmotif of the
SGF algorithm.

For this purpose, we impose to all acceptance factors cor-
responding to left �or right� moves to be equal. This requires
the intermediate acceptance factors q←

c−d and q←
d−c �or q→

c−d and
q→

d−c� to be equal to 1. This is realized if

P←
kc = 
c min�1,

ĜT̂�

T̂Ĝ�
� , �39�

P→
kc = 
c min�1,

T̂Ĝ�

ĜT̂�
� , �40�

P←
kd = 
d min�1,e−��L

k−�R
k ��VR

k −VL
k �� , �41�

P→
kd = 
d min�1,e−��L

k−�R
k ��VL

k−VR
k �� , �42�

where 
c and 
d are optimization parameters belonging to
�0;1�. By tuning these parameters, the mean length of the
steps of the Green operator can be controlled. Note that we
have explicitly excluded 1 from the allowed values for these
optimization parameters. This is necessary for the Green op-
erator to have a chance to end in a diagonal configuration,
��L�= ��R�. Indeed, the choice 
c=
d=1 would systemati-
cally lead to values of 1 for the probabilities Pkc and Pkd for
diagonal configurations. Therefore the Green operator would
never stop in a diagonal configuration, and no measurement
could be done. It is important here to note that the quantities

Ĝ�, ĜT̂�, and T̂Ĝ� are evaluated between the states on the
left and the right of the Green operator that are present at the
moment where those quantities are needed, as well as for the
times indices �L

k and �R
k and the potentials VL

k and VR
k .

All acceptance factors corresponding to a given direction
of propagation become equal if we choose for the creation
probabilities

P←
† ��� =

ĜT̂�

ĜT̂� + Ĝ�
�1 − P→

kd��VL − VR�
�1 − P→

kc��1 − e−��L−�R��VL−VR��

, �43�

P→
† ��� =

T̂Ĝ�

T̂Ĝ� + Ĝ�
�1 − P←

kd��VR − VL�
�1 − P←

kc��1 − e−��L−�R��VR−VL��

. �44�

Finally, all acceptance factors become independent of the
direction of propagation if we choose P�←�=r←��� /
�r←���+r→���� and P�→�=r→��� / �r←���+r→���� with

r←��� = �1 − P→
kc�

ĜT̂�

Ĝ�
+

�1 − P→
kd��VL − VR�

�1 − e−��L−�R��VL−VR��
, �45�

r→��� = �1 − P←
kc�

T̂Ĝ�

Ĝ�
+

�1 − P←
kd��VR − VL�

�1 − e−��L−�R��VR−VL��
. �46�

As a result all moves can be accepted again, ensuring the
maximum of simplicity of the algorithm. We still have some
freedom in the choice of the optimization parameters 
c and

d. This is discussed in the next section.

V. TEST AND OPTIMIZATION OF THE ALGORITHM

From the central limit theorem, we know that the error bar
associated with any measured quantity must decrease as the
square root of the number of measurements, or equivalently,
as the square root of the time of the simulation. Therefore it
makes sense to define the efficiency E of a QMC algorithm
by

E��,O� =
1

T�����O����2 , �47�

where � represents the set of all optimization parameters of
the algorithm, O is the measured quantity of interest, T��� is
the time of the simulation, and �O��� is the error bar asso-
ciated with the measured quantity O. This definition ensures
that E is independent of the time of the simulation. As a
result, the larger E, the more efficient the algorithm.

In the present case we have �= �
c ,
d	, while �=� for
the original SGF algorithm. It is useful here to realize that,
by symmetry, the mean values of P←

kc and P→
kc �and P←

kd and
P→

kd� must be equal. Therefore we define Pkc= P←
kc�= P→

kc�
and Pkd= P←

kd�= P→
kd�. It seems reasonable to impose a con-

dition of uniform sampling, Pkc= Pkd. This condition can be
satisfied by adjusting dynamically the values of 
c and 
d
during the thermalization process. For this purpose we intro-
duce a new optimization parameter 
� �0;1� and apply the
following algorithm from time to time while thermalizing
�we start with 
c=
d=
�:

Evaluate Pkc and Pkd over few iterations

If Pkc � Pkd

then 
d → 
d
Pkc

Pkd

else 
c → 
c
Pkd

Pkc .

If 
c � 
d

then 
c =




d
,
d = 


else 
d =




c
,
c = 
 .
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Thus we are left with the optimization parameter 
. In order
to determine the optimal value, we have considered two dif-

ferent Hamiltonians Ĥ1 and Ĥ2, and evaluated the efficiency
of the algorithm while scanning 
. The first Hamiltonian we
have considered describes free hardcore bosons and is ex-
actly solvable,

Ĥ1 = − t

i,j�

�ai
†aj + aj

†ai� , �48�

where the sum runs over pairs of first neighboring sites and t
is the hopping parameter. The second Hamiltonian is highly
nontrivial and describes a mixture of atoms and diatomic
molecules, with a special term allowing conversions between
the two species �20�,

Ĥ2 = − ta

i,j�

�ai
†aj + aj

†ai� − tm

i,j�

�mi
†mj + mj

†mi�

+ Uaa

i

n̂i
a�n̂i

a − 1� + Umm

i

n̂i
m�n̂i

m − 1� + Uam

i

n̂i
an̂i

m

+ D

i

n̂i
m + g


i

�mi
†aiai + ai

†ai
†mi� , �49�

where ai
† and ai �mi

† and mi� are the creation and annihilation
operators of atoms �molecules�, ta, tm, Uaa, Umm, and Uam
are, respectively, the hopping parameter of atoms, the hop-
ping parameter of molecules, the atomic on-site interaction
parameter, the molecular on-site interaction parameter, and
the interspecies interaction parameter. The conversion term is

tunable via the parameter g and does not conserve the num-
ber Na of atoms or the number Nm of molecules. However,
the total number of particles N=Na+2Nm is conserved and is
the canonical constraint. The parameter D allows to control
the ratio between the number of atoms and molecules. The
application of the SGF algorithm to the Hamiltonian �49� is
described in detail in Ref. �15�. The changes coming with the
directed update scheme are completely independent of the
chosen Hamiltonian.

Table I shows the mean number of creations and destruc-
tions in one step, S�
��, and the relative efficiency

E�
 ,O� /E�� ,O� of the algorithm applied to Ĥ1 at half fill-
ing, for which we have measured the energy E, the superfluid
density �s, and the number of particles in the zero momen-
tum state n�k=0�.

For Ĥ2, we have used the parameters ta=1, tm=1 /2,
Uaa=5, Umm=5, Uam=5, g=5, D=3, and a density of par-
ticles �=2. Tables II and III show S�
��, and the relative
efficiency of the algorithm for the energy E, the density of
atoms and molecules �a and �m, the occupation of the zero
momentum state for atoms and molecules na�0� and nm�0�,
and the atomic and molecular visibilities Va and Vm.

While the best value of 
 depends on the Hamiltonian
that is considered and the measured quantity, it appears that a

TABLE I. Relative efficiency of the algorithm applied to Ĥ1 at
half filling for the energy, the superfluid density, and the number of
particles in the zero-momentum state.


 S�
�� E�
 ,E� E�
 ,�s� E�
 ,n�0��

0 1.00 0.307400 0.487457 0.503105

0.1 1.10 0.774161 0.513633 0.805048

0.5 1.91 0.430843 3.771422 1.289757

0.9 7.00 0.977413 5.400997 6.629893

0.95 10.49 2.427874 10.688100 7.994883

0.99 17.49 1.286403 27.281408 1.327064

0.9999 20.93 0.818048 17.510068 1.059823

0.999999 21.00 0.710448 13.353809 0.779245

TABLE II. Relative efficiency of the algorithm applied to Ĥ2

for the energy and the density of atoms and molecules.


 S�
�� E�
 ,E� E�
 ,�a� E�
 ,�m�

0 1.00 1.086334 0.455569 1.670239

0.1 1.10 1.424308 0.506873 1.858339

0.5 1.88 2.813905 1.265620 4.640123

0.9 6.35 2.562529 5.999027 21.993900

0.95 8.99 2.335315 3.917233 14.361774

0.99 12.79 2.592328 1.721519 6.311612

TABLE III. Relative efficiency of the algorithm applied to Ĥ2

for the occupation of the zero-momentum state and the visibility of
atoms and molecules.


 E�
 ,na�0�� E�
 ,nm�0�� E�
 ,Va� E�
 ,Vm�

0 0.433382 0.234412 1.323720 0.239113

0.1 0.269700 0.181019 0.585183 0.248060

0.5 1.752466 2.806166 2.667114 1.357462

0.9 7.080124 5.638859 16.454676 4.482435

0.95 4.893878 3.757436 5.088775 2.248427

0.99 3.871723 2.341222 7.783268 1.279447
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Atoms
Molecules
Atoms+Molecules

FIG. 3. �Color online� An example of density profiles obtained
when the trapping potential �50� is added to the Hamiltonian �49�.
The error bars are smaller than the symbol sizes, and are the biggest
in the neighborhood of site indices 23 and 47, where they equal the
size of the symbols.
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good compromise is to choose 
 between 0.90 and 0.99. The
improvement of the efficiency is remarkable. In the follow-
ing, we illustrate the applicability of the algorithm to prob-
lems with nonuniform potentials, by adding a parabolic trap
to the Hamiltonian �49�:

ĤT = Wa

i

�i − L/2�2n̂i
a + Wm


i

�i − L/2�2n̂i
m. �50�

The parameters Wa and Wm allow us to control the curvature
of the trap associated with atoms and molecules, respec-
tively, and L is the number of lattice sites. The inclusion of
this term in the algorithm is trivial since only the values of
the diagonal energies VL and VR are changed. Figures 3 and
4 show the density profiles and momentum distribution func-
tions obtained for a system with L=70 lattice sites initially
loaded with 50 atoms and no molecules, and the parameters
ta=1, tm=0.5, Uaa=4, Uam=12, Umm=�, g=0.5, D=0, Wa
=0.008, Wm=0.008, and �=20. The presented results were
obtained by performing 104 updates for thermalization, and
2�104 updates with measurements �an update is to be un-
derstood as the occurrence of a diagonal configuration�. The
time of the simulation is about 8 h on a cheap 32-bit laptop
with 1 GHz processor, with an implementation of the algo-
rithm involving dynamical structures with pointers �see Ref.
�15��.

VI. CONCLUSION

We have presented a directed update scheme for the SGF
algorithm, which has the properties of keeping the simplicity

and generality of the original algorithm, and significantly
improving its efficiency.

ACKNOWLEDGMENTS

I would like to express special thanks to Peter Denteneer
for useful suggestions. This work is part of the research pro-
gram of the “Stichting voor Fundamenteel Onderzoek der
Materie �FOM�,” which is financially supported by the “Ned-
erlandse Organisatie voor Wetenschappelijk Onderzoek
�NWO�.”

APPENDIX: EXPONENTIAL RANDOM NUMBER
GENERATOR

We describe here how to generate numbers with the ap-
propriate exponential distribution �16�. Assuming that we
have at our disposal a uniform random number generator that
generates a random variable U with the distribution �U�u�
=1 for u� �0;1�, we would like to find a function f such that
the random variable T= f�U� is generated with the distribu-
tion

�T
��,�V��� =

�Ve−��V

1 − e−���V , � � �0;��� , �A1�

where �� and �V are the parameters of the exponential dis-
tribution. Because of the relation T= f�U�, the probability to
find T in the range �� ;�+d�� must be equal to the probability
to find U in the range �u ;u+du�. This implies the condition

�U�u��du� = �T
��,�V����d�� , �A2�

with �d� /du�= df /du. Thus we have

�Ve−f�u��V

1 − e−���V

df

du
=  1. �A3�

Taking the antiderivative with respect to u on both sides of
the equation, we get

− e−f�u��V

1 − e−���V =  �u + C� , �A4�

where C is a constant. This constant and the correct sign are
determined by imposing the conditions f�0�=0 and f�1�
=��. As a result, if u is a realization of U, then a realization
of T is given by

� = −
1

�V
ln�1 − u�1 − e−���V�� . �A5�
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FIG. 4. �Color online� An example of momentum distribution
functions obtained when the trapping potential �50� is added to the
Hamiltonian �49�. The error bars are smaller than the symbol sizes,
and are the biggest for k=0, where they equal the size of the
symbols.
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